
Towards extreme-scale simulations with next-generation Trilinos: a
low Mach fluid application case study

Paul Lin, Matthew Bettencourt, Stefan Domino, Travis Fisher, Mark Hoemmen,
Jonathan Hu, Eric Phipps, Andrey Prokopenko, Sivasankaran Rajamanickam, Christopher Siefert,

Eric Cyr, Stephen Kennon
Sandia National Laboratories

Albuquerque, NM USA
ptlin@sandia.gov

Abstract—Trilinos is an object-oriented software
framework for the solution of large-scale, complex multi-
physics engineering and scientific problems. While the
original version of Trilinos was designed for highly
scalable solutions for large problems, the need for
increasingly higher fidelity simulations has pushed the
problem sizes beyond what could have been envisioned
two decades ago. When problem sizes exceed a billion ele-
ments even highly scalable applications and solver stacks
require a complete revision. The next-generation Trilinos
employs C++ templates in order to solve arbitrarily
large problems and enable extreme-scale simulations.
We present a case study that involves integration of
Trilinos with an engineering application (Sierra low
Mach module/Nalu), involving the simulation of low
Mach fluid flow for problems of size up to nine billion
elements. Through the use of improved algorithms and
better software engineering practices, we demonstrate
good weak scaling for the matrix assembly and solve
for the engineering application for up to a nine billion
element fluid flow large eddy simulation (LES) problem
on unstructured meshes with a 27 billion row matrix on
131,072 cores of a Cray XE6 platform.

Keywords-Solver library, Trilinos, Vertical integration,
Extreme-scale simulations

I. INTRODUCTION

Trilinos is an object-oriented software frame-
work for the solution of large-scale, complex
multi-physics engineering and scientific problems
[1]. While the original version of Trilinos was
designed for highly scalable solutions for large
problems, the need for increasingly higher fidelity
simulations has pushed problem sizes beyond

what one could have envisioned two decades ago.
Therefore, there is a need for a revision of Trilinos
that both supports arbitrarily large problem sizes
and provides a path forward for good performance
on future architectures.

Many challenging scientific and engineering
problems at Sandia National Laboratories (SNL)
require ever increasing fidelity for computational
simulations. One example is the accurate simula-
tion of fire environment, for example, large scale
hydrocarbon pool fires that occur in accident sce-
narios. Figure 1a depicts an example hydrocarbon
JP-8 pool fire experiment and Figure 1b depicts a
numerical simulation.

SNL uses the SIERRA/Fuego [2] engineer-
ing application, built on top of the SIERRA
Framework [3], to simulate the fire environment.
SIERRA/Fuego is a low-Mach number, turbu-
lent reacting flow code. It uses Trilinos’ solvers
through the Finite Element Interface (FEI). The
fire environment scenarios have required increas-
ingly higher fidelity, but the choice of 32-bit ordi-
nals for the entire stack from the applications to
solvers (SIERRA Framework, FEI, and Trilinos)
limited simulations to less than about two billion
entities (e.g., nodes, elements, edges, matrix rows).
This severely limits the fidelity of current and
especially future simulations, and motivated the
development of a new application code.

This paper describes the next-generation Trili-
nos and presents a case study of its integration into
a new engineering application (SIERRA low Mach

2014 IEEE 28th International Parallel & Distributed Processing Symposium Workshops

978-1-4799-4116-2/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPSW.2014.166

1485

module/Nalu; henceforth referred to as “Nalu”)
that does not employ the SIERRA Framework and
FEI. This paper focuses on next-generation Trili-
nos’ ability to enable high fidelity simulations that
were not previously possible with SIERRA/Fuego
and demonstrate scalability for very large prob-
lems. We limit this study to inter-node scalability.
The new revision of Trilinos also addresses on-
node scaling on both multicore nodes and accel-
erators through the Kokkos package. Please refer
to [4] for Kokkos’ design and path forward.

(a) (b)
Figure 1. Hydrocarbon JP-8 pool fire (a) experiment and (b)
numerical simulation

Our primary contributions in this paper are:
• Significant revision of Trilinos’ new solver

stack, focused on performance and scalability.
• Demonstrated the capability and scalability

of next-generation Trilinos with a new appli-
cation SIERRA/Nalu for 9 billion nodes on
131,072 cores: the largest such simulation on
unstructured meshes (in terms of node count)
to our knowledge.

• Case study describing issues and their solu-
tions faced in integrating a large solver stack
with an application, and tracking performance
improvements over time.

We also discuss best practices for future applica-
tions that will employ the new Trilinos, e.g., direct
matrix assembly into Trilinos data structures.

For perspective on how the size of the simula-
tions enabled by the new Nalu code compare with
other applications, we briefly describe the few
other comparable large scale simulations in the
literature. Problem scale of interest depends on the
modeling technique, e.g., Direct Numerical Sim-

ulation (DNS) or Large Eddy Simulation (LES),
the choice of structured or unstructured meshes
(latter more challenging) and explicit or implicit
coupling strategies (latter more challenging). On
structured meshes, Hawkes et al. [5] have shown
LES simulations of up to seven billion elements
on 120k cores. On unstructured meshes, implicit
LES of reacting flow simulations with 2.6 billion
tetrahedral elements [6] and recently 20 billion
tetrahedral elements (about 3.5 billion nodes) were
done by CORIA-CNRS (University of Rouen and
the Institute of Applied Sciences). Intermediate
approaches are led by the Uintah/Arches code base
effort of the University of Utah (C-SAFE ASCI
Alliance center) where structured orthogonal ex-
plicit momentum is coupled with a linear pressure
Poisson equation (PPE) solve using the Hypre
algebraic multigrid preconditioner. Their simula-
tions have reached 256k cores on meshes with
about 6 billion structured hexahedral elements
[7]. Based on our survey of leaders in the fully
implicit low Mach field, for unstructured meshes
we believe that our 9 billion node simulation on
131,072 cores rivals any other in the field.

We first summarize Trilinos and Nalu in Sec-
tions II and III, then discuss their integration in
Section IV. Section V presents results showing
the new capability provided by the next-generation
Trilinos, and Section VI concludes and outlines
future work.

II. TRILINOS

A. Trilinos Overview
Trilinos [1] is an open-source software project

to develop and implement robust algorithms
and enabling technologies for solving large-scale
mathematical problems from scientific and engi-
neering applications. It focuses on the core re-
quirement of these applications: solving large lin-
ear and nonlinear systems of equations, eigensys-
tems and other related problems, possibly in par-
allel. Supported capabilities include distributed-
memory parallel linear algebra, partial differen-
tial equation discretizations, parallel partitioning
for load balance, incomplete factorizations and
relaxations, multilevel preconditioners (such as

1486

algebraic multigrid), solvers for linear systems
with successive or simultaneous multiple right-
hand sides, block iterative eigensolvers, nonlinear
methods including continuation, time integrators,
large-scale nonlinear optimization, and automatic
differentiation.

Trilinos is based and hosted at Sandia National
Laboratories, but includes significant external part-
nerships and contributions. Most Trilinos packages
have a modified BSD license; a few have the
GNU Lesser General Public License. The library
grew out of a group of established algorithms
efforts at Sandia. It was motivated by a recogni-
tion that a modest degree of coordination among
these efforts could have a large positive impact
on the quality and usability of the software we
produce, and therefore enhance the research, de-
velopment and integration of new algorithms and
enabling technologies into applications. Because
of the tools and infrastructure that Trilinos pro-
vides, the degree of effort required to develop new
algorithms and enabling technologies has been
substantially reduced because our common base
provides an excellent starting point. Furthermore,
many applications are standardizing on Trilinos’
interfaces. As a result, these applications have
access to all Trilinos solver components without
any unnecessary interface modifications.

B. Trilinos packages used by Nalu
This paper mentions two different Trilinos

solver stacks: the “current one,” and the “new”
or “next-generation” stack. The new stack is a
complete rewrite of the old stack, in order to
support the following new capabilities:

• Solve problems with more entities than can
fit in a 32-bit integer (> 2 billion), without
requiring use of 64-bit integers (higher mem-
ory bandwidth and storage cost) throughout

• Allow use of data types other than double-
precision floating-point, e.g., complex or ex-
tended precision

• Enable and simplify the ongoing addition
of “hybrid” MPI + shared-memory paral-
lelism for many programming models (e.g.,
OpenMP and CUDA)

Functionality Current New
Distributed linear algebra Epetra [1] Tpetra [8]
Iterative linear solvers AztecOO [9] Belos [10]
Incomplete factorizations AztecOO, Ifpack Ifpack2
Algebraic multigrid ML [11] MueLu [12]
Partition & load balance Zoltan [13] Zoltan2[14]
Direct solvers interface Amesos Amesos2 [10]

Table I
COMPARISON OF SIX CURRENT VS. NEW TRILINOS SOLVER

STACK PACKAGES

The new stack uses C++ templates to implement
these new capabilities. Table I summarizes both
stacks. This paper demonstrates the new stack’s
scalability in e.g., Figure 3, especially when they
are all integrated together and used in Nalu. Each
one of these packages had to undergo significant
changes to demonstrate scalability at this scale.
The dependency diagram in Figure II-B shows
the complex dependencies in these packages.

We briefly mention how Nalu uses each pack-
age here and refer the reader to their respective
references for other capabilities supported in these
packages. For this study, all linear solves in Nalu
used Belos’ [10] implementation of the GMRES
iteration [15]. Solves for all equations other than
the pressure Poisson equation (PPE) were precon-
ditioned using Ifpack2’s symmetric Gauss-Seidel.
For the PPE, Nalu used MueLu’s [12] algebraic
multigrid precondtioner with Ifpack2’s Chebyshev
smoother on all levels except for the coarsest,
which used the SuperLU direct solver through
the Amesos2 interface [10]. To improve efficiency
of the multigrid preconditioner, a rebalance was
performed on the coarser levels of the matrix us-
ing Zoltan2’s multijagged algorithm [14]. MueLu
explicitly forms coarser-level matrices, and a key
computation kernel in this process is Tpetra’s [8]
sparse matrix-matrix multiply.

III. SIERRA/NALU APPLICATION CODE

Nalu is a generalized unstructured, massively
parallel, low-Mach number variable density turbu-
lent flow application code. This code base began
as an effort to prototype Sierra Toolkit [16] usage

1487

Matrices & vectors

SIERRA / Nalu finite element application

MueLu

Amesos2

Zoltan2

Belos

Ifpack2

Tpetra

Kokkos

SuperLU

Teuchos

BLAS &
LAPACK MPI

Preconditioners

External libraries

Load balancing &
partitioning

Iterative linear solvers

Figure 2. Software dependencies between SIERRA / Nalu,
the Trilinos packages it uses, and externally provided libraries.
Arrows show dependencies pointing at the target, that is, the
“client” used by the other (source) package. Solid lines indicate
currently required dependencies, and dotted lines indicate optional
or likely future dependencies. To save space, we omit transitive
dependencies through Tpetra on the utilities package Teuchos.

along with direct parallel matrix assembly to the
Trilinos Epetra and Tpetra data structures.

As turbulent flows involve a very large range
of spatial and temporal scales, simulation that
resolves all the scales is currently impractical and
therefore modeling approaches are required. Nalu
supports a variety of turbulence models, however,
all are classified under the class of modeling
known as Large Eddy Simulation (LES). LES in-
volves a spatial-filtering of the equations. Physical
features larger than the mesh element scale will be
resolved, while smaller features will be modeled.
The spatial-filtered (Favre-filtered) equations are
employed for this work. Detailed descriptions of
the governing equations are provided in the Nalu

theory manual [17].
Nalu supports both control volume finite ele-

ment (CVFEM) and edge-based vertex centered
(EBVC) discretizations in the context of an ap-
proximate pressure projection algorithm (equal
order interpolation using residual-based pressure
stabilization), and both are employed in this study.
Both discretizations are finite volume formulations
and both solve for the primitive variables and are
considered vertex-based schemes.

IV. INTEGRATING TRILINOS IN NALU

Integrating a large application code base with
an equally large solver stack brought up several
challenges on both sides. We describe some of
these and how we overcame them in this section.
They are grouped into two subsections, based on
whether the challenges related more to parallel
scalability and performance, or to software engi-
neering. However, we found that most cut across
both software engineering and performance issues.

A. Scalability Challenges from Integration
1) Matrix Assembly and Data Structures:

Much of the integration effort revolved around the
assembly of finite elements into Trilinos sparse
matrices and vectors. This is further compli-
cated when the application, like Trilinos, uses
a distributed-memory parallel programming envi-
ronment. Mesh decomposition, global unknown
numbering, and “ghosting” are just a few of the
difficulties with mapping an application to a solver
library. We briefly outline our approach below,
which we believe applies to a broad range of
applications involving discretization of partial dif-
ferential equations on an unstructured mesh.

The following assumptions drive the assembly
process. First, the application knows how to map
each unknown to a global identifier. Second, the
application has decomposed the computational do-
main over MPI processes by elements. Processes
are assigned both owned and shared nodes /
unknowns. Third, assembling the linear system
requires contributions from neighboring processes
for unknowns near interprocess partition bound-
aries. Finally, since local unknowns are num-

1488

bered continuously [0, n) and global unknowns
are sparse in [0, n×Nproc), conversion from local
to global unknown numbering (array dereference)
is faster than conversion from global to local
unknown numbering (hash table look-up).

Our approach led to the solvers owning the
sparse matrix and dense vector data structures
corresponding to the linear systems to solve, and
to the application owning the assembly process
and its corresponding mesh and element data
structures.

Trilinos’ matrix storage classes let users store
off-process contributions into a matrix. These
classes then can assemble the off-process con-
tributions into a consistent view with a single
call to a function that “globally assembles.” Users
do not have to specify or even know about the
required interprocess communication. However,
this simplicity and generality comes at a price: the
function assumes that the communication pattern
may change from call to call. Computing this pat-
tern itself requires communication, which is more
expensive than executing the pattern. However, in
our application, the mesh changes either rarely
or not at all. This means that the communication
pattern rarely or never changes. Thus, it was more
efficient to implement a custom global assembly
approach that reuses a precomputed communica-
tion pattern.

Fortunately, Trilinos itself lets users precom-
pute and reuse a communication pattern from its
source and target data distributions. Our custom
global assembly exploits this feature, by splitting
the matrix in two. One matrix contains only the
owned rows on each process, and the other matrix
only includes rows corresponding to off-process
contributions. Once we construct the graphs for
these two matrices, we created a communication
pattern which combines the off-process contribu-
tions into the locally owned matrix on the remote
process(es). We then reused it for each assembly.
This method reduces communication for assem-
bling off-process contributions, while exploiting
existing Trilinos features. While this process relies
on Trilinos functionality to achieve the goal of
efficient assembly, this procedure of splitting the

!"

#!!"

$!!"

%!!"

&!!"

'!!!"

'#!!"

'$!!"

('#" ')!#$" #)!$&" $)!*%" &)'*#" '%)+&$"

!"
#
$%
&'
(%

)%*+'%

,"-$./%/0%!1$/-2%3'4%52'$6"7$%82/-"9%
:''$#;6<%=/-07>%=.26"7>?%@AB8%+6$#%

,-./01"12"34/1.5" 657/8-9/"

good

Figure 3. Comparison of matrix assembly: baseline through
FEI compared with direct to Tpetra with additional performance
optimizations. Latter is faster and scales considerably better: over
a factor of ten reduction in assembly time at 16k cores.

matrix into local and remote components and com-
municating the remote portion into neighboring
process(es) local matrix contributions is general
and would apply if one is building fully assembled
matrix representations.

Assembly of these two sub-matrices involves
three sets of identifiers: the global unknown iden-
tifier, the process-local identifier, and the row in
each of the matrices. As mentioned above, using
global identifiers is slower (by about 10 times)
than local identifiers, due to global to local con-
version. Although determining the local identifier
is fast, it does not directly correspond to a row
in the local or remote matrices. Therefore, we
created a mapping between local identifier to row
in the matrix, where the first sequence of val-
ues corresponds to the locally owned unknowns,
and the remaining values correspond to unknown
contributions on remote processes. This ordering
allows one to assemble the matrices using only
local indices. This approach adds a level of indi-
rection to the assembly process, and thus a level
of complexity. However, the combination of these
two processes, split local and remote matrices and
local indexing, greatly improves performance in
the assembly process. Figure 3 presents a com-
parison of the matrix assembly for the baseline

1489

approach that uses the SIERRA framework and
FEI, versus the direct assembly to Tpetra approach
with the two performance optimizations described
above. The latter approach is consistently faster
and scales significantly better, providing over a
factor of ten reduction in assembly time at 16k
cores. Ideally this approach can be generalized and
added to the Trilinos libraries.

2) Tracking performance over time: Although
the goal for the new application code is to enable
higher fidelity simulations, we had to do so with-
out sacrificing the production code’s performance
with smaller problems. To achieve this goal, it
was essential to track performance comparisons
between the new and current solver stack (Table I).

To compare the solver stacks and track their
performance over time we used one instance of
the test case described in the results section (Sec-
tion V), a 140 million element problem on 2048
processors of the Cielo Cray XE6 sited at Los
Alamos National Laboratory (LANL). The sys-
tem consists of 8944 compute nodes (dual-socket
2.4GHz 8-core AMD Magny-Cours, total 142,000
cores) with Cray Gemini 3D torus interconnect.

Figure 4 tracks performance over time for the
new Tpetra-based Nalu code, compared with the
baseline Epetra-based code that employed the
SIERRA framework and FEI. The latter will be
referred to as “baseline.” Vertical axis plots the
time ratio (ratio < 1 means the new code is
faster than baseline). “Execute” time is the wall
time (sans I/O time) of the simulation. “Matrix
assemble” time is the time to fill the matrices
for the linear solve. “Matrix solve” time includes
the preconditioner setup and linear system solve
time or preconditioned iteration time. The “matrix
solve” reported here sums the time for the five
equations (momentum equations, PPE and mixture
fraction equation). We solved the momentum and
mixture fraction equations with symmetric Gauss-
Seidel preconditioned GMRES, and solved the
PPE with MueLu preconditioned GMRES. Multi-
grid preconditioner setup is performed once and
reused for all time steps.

The horizontal axis plots days since March 12.
On March 13, only the matrix assembly was faster

!"!"

!":"

#"!"

#":"

$"!"

$":"

%"!"

!" :" #!" #:" $!" $:" %!" %:" &!" &:" :!"

&!
$9
"%#

$$
%!
%&'
&$
()
(*
52

)$
'&$

$%

+2<)%)&$,$%-./0.0/-%

:11'&,22($%3(4$%&!$9"%#$$$%22($%!%&'&$()(*52)$'&$$%!&5$%622(%

'()*;<)" +,<-.("/00)123)" +,<-.("4536)" 15170536)" 88)70536)"

good

Figure 4. Tracking performance over time, comparing new Tpetra-
based Nalu with baseline code (SIERRA/Framework, FEI, and
Epetra). Vertical axis: ratio of the wall times of baseline code to
new Tpetra-based Nalu code. Ratio < 1 means new code is faster.
By the end of the time period, execute and solve times are 26%
and 1% faster respectively than baseline.

than the baseline (as a result of the improvements
described previously); the matrix solve time was
slower. By March 21, the “execute” time was
faster for the new vs. old codes. Day #20 (April
1) presents the first comparisons between the
new code and the baseline with all six of the
required Trilinos next-generation solver packages
integrated into the new code. By the end (April
29 code base), execute time for the new code was
26% faster than the baseline, and the “matrix solve
time” (sum of solve time for all five equations
including preconditioner setup time) was 1% faster
than the baseline. Note that sometimes the perfor-
mance regressed. This demonstrates the value of
carefully tracking performance.

3) Effect of remapping on multigrid: The
MueLu algebraic multigrid library uses smoothed
aggregation. This aggregates locally (i.e., aggre-
gates cannot cross process boundaries) to group
nodes on finer levels into a single node on the
next coarser level. As the number of nodes per pro-
cess is reduced on the coarser levels, the coarser
level matrices are restricted to a subset of MPI
processes, and their data are reassigned through
rebalancing. Zoltan2 determines the new process
assignment for the data, and MueLu performs the
data migration.

Initial comparisons showed a performance dif-
ference between MueLu with Zoltan and MueLu

1490

with Zoltan2. We determined that a “remap” step,
implemented in Zoltan but not in Zoltan2, was
the main cause. “Remap” partitions the rebal-
anced matrix in order to maximize overlap with
the original matrix partitions. This minimizes the
amount of data to communicate when applying
the preconditioner. The MueLu and Zoltan2 teams
consequently implemented a remapping procedure
like Zoltan’s. Remap’s effect was not large enough
to be included in the original design, but its impact
showed at scale. For the 140 million element
mesh test case on 2048 cores, discussed in Section
IV-A2, the preconditioned iteration time (linear
solve plus preconditioner apply, but not setup) for
Zoltan2 without vs. with remap is 181 resp. 143
seconds. Lack of remap increases solve time by
27%. This illustrates the value of exercising codes
at large scales on real problems with natural load
imbalance.

B. Software Engineering Challenges
1) Special cases for performance: Solver de-

velopers tend first to write general code that imple-
ments the full promised set of features. Later, ap-
plications help the developers identify frequently
used special cases that need a speed-up. Nalu
helped Trilinos identify many such special cases.
We found that addressing them added very little
code maintenance overhead. Also, Nalu exercises
a common set of use cases for linear solvers and
preconditioners, so speeding up common special
cases helped other applications.

For example, constructing Jacobi and symmetric
Gauss-Seidel smoothers from a sparse matrix was
taking too long. We fixed this by optimizing
repeated extraction of the diagonal of a sparse
matrix whose values change, but whose structure
does not change.

We also found, to our surprise, that the Intel
C++ compiler (e.g. Intel 11) refused to optimize
inside a recursive function with template param-
eters. This slowed down communication setup.
The function in question sorts one array and
applies the resulting permutation to other arrays.
We fixed this by writing a nonrecursive sort.
Another example involved Trilinos’ calls to the

BLAS’ dense matrix-matrix multiply (DGEMM)
for dense matrix-vector or dot products, when
the corresponding specialized BLAS operations
(DGEMV resp. DDOT) were actually faster. Al-
though DGEMM worked, it was slower than more
specific functions. This is probably because ven-
dors tune DGEMM for when all matrix inputs
have multiple columns, to optimize important
benchmarks like LINPACK.

2) Continuous integration of solvers and appli-
cations: Both Sierra and Trilinos are large code
bases with over 100 developers constantly making
changes relevant to performance. Given these con-
stant changes, we found continuous integration of
the solver library with its application key to suc-
cess, since it kept both code bases building without
errors and passing tests. Nevertheless, continuous
integration is considerably more challenging than
one might expect. The two code bases have dif-
ferent repositories, developers, build systems, and
even software engineering philosophies. It was
difficult even to ensure that the application had
the latest version of Trilinos.

Another aspect of continuous integration is the
testing framework. In our experience, unit testing
and scaling tests with mini-driver codes are nec-
essary, but not sufficient to improve application
codes. Although the most important metric is
performance comparisons between the new and
baseline application code, as shown in Section
IV-A2, this work also employed unit testing and
driver codes that could test a subset of the Trili-
nos packages. Examples of the latter included a
Poisson driver that the MueLu team used to test
correctness and performance. We had mini-drivers
to compare performance of the Belos vs. Aztec
linear solvers. The use of the driver codes was
critical to identify and fix performance problems
as they appeared. However, since they did not
fully represent the complexity of the application
code, there were cases where the driver codes
would predict larger performance improvements
than actually achievable with the application code.
While one could argue that better mini-drivers
would have solved that problem, in our experience,
the key to real impact is a combination of continu-

1491

Figure 5. Mixture fraction-based turbulent open jet (Re=6600)
test case used for the simulations. Jet emanates from pedestal at
bottom of domain.

ous integration of the repositories, unit-testing and
scaling tests with mini-drivers, and continuously
tracking performance with the real applications
themselves.

V. RESULTS

We now demonstrate Nalu’s ability to perform
very large scale simulations using new Trilinos.
The test case (Figure 5) is a mixture fraction-based
turbulent open jet with Reynolds number 6600
[18]. The jet emanates from a pedestal from the
bottom of the cylindrical computational domain,
which we discretize with unstructured hexahedral
elements. Nalu solves six equations: PPE, coupled
momentum system for three component directions,
mixture fraction, and subgrid-scale kinetic energy.
Simulations ran on the Cielo Cray XE6 platform.

Figures 6 resp. 7 show weak scaling for as-
sembly and solve for the coupled momentum
system resp. PPE. The vertical axis is time per
nonlinear step and the horizontal axis is the MPI
process count. “Assemble” is the local matrix
assembly time, “assemble+load complete” adds
global assembly time, and “solve” is the matrix
solve time per nonlinear step. PPE results exclude
preconditioner setup and plot only the multigrid-
preconditioned GMRES time. Muelu’s multigrid
setup time currently scales significantly worse
than ML. MueLu has a different relationship to
its computational kernels than ML. ML is self-
contained, while MueLu depends more on other
Trilinos packages. In particular, a key MueLu
setup kernel – sparse matrix-matrix multiply – is

!"!"

#"!"

$"!"

%"!"

&"!"

'"!"

("!"

$'(" $)!&=" #()%=&" #%#)!*$"

!"
#
$%
&'
()

*")
$+
,%-

.$
/0
%&1
0%

C%231%

-4355:%'+*6%7$+8%-9+*"):%3*$#$).;<+1$=>%
DE8%3*$#%?(,$%?(6/*$=%8(#$).6#%

+77,-./," +77,-./,>0123"41-5/,1," 61/7,"

Figure 6. Nalu weak scaling for coupled momentum. Assemble
time scales well. If plotted time per Krylov iteration, time would
have been almost flat; here the increase in solve time is due
to increase in iteration count. Very good scaling as increase of
problem size is 512x and largest problem has 27 billion row matrix.

!"!"

#"!"

$"!"

%"!"

&"!"

?"!"

@"!"

A"!"

B"!"

$?@" $'!&B" #@'%B&" #%#'!A$"

!"
#
$!
F"
#$

%&$
'(
)%*

+'
,-
%F.
-%

/%01.%

*2133:!"(%4%5'(6%*7(%&$8%1%'9'$+:;(.'<=%
GH6%1%'9!>#)'%001%F84%?8)&<-%

())*+,-*" ())*+C./01"2/+3" (33-4"35*6C789:;"

Figure 7. Nalu weak scaling for PPE. Assemble time scales
well. Increase in solve time is due to increase in iteration count.
Very good scaling as increase of problem size is 512x and largest
problem has 9 billion row matrix.

implemented in Tpetra, while ML implemented
its own. Improving MueLu’s setup time will re-
quire improvements to both MueLu and Tpetra.
A large effort is underway by the MueLu team
to improve setup performance and scaling by
comparing MueLu and ML. Current efforts focus
on optimizing Tpetra’s matrix-matrix multiply and
reducing unnecessary communication.

The solve time’s increase per nonlinear step in

1492

8"

!"

""

#"

$"

%&"

%!"

%""

%#"

"'&(#" %#')$"" #*'*)#"

@7
!!
"#

$%

%%&+'%

()+**:+,-.#%(/0123%(4-.523%+.!6!2/78-'!"%
(49!6!:%;<;=5%!.!6>%?1#$.!"%@16!2/#6%%

+,-./" 011-23/-" 011-2456.,"7628" 96/:-"

Figure 8. Nalu strong scaling for coupled momentum for 1.12
billion element mesh. Obtained ideal scaling for solve time while
assemble time scales very well.

Figure 6 as the problem is scaled up is due to
the iteration count increase. If time per iteration
were plotted, it would be almost flat (it increases
4% when weak scaling from 256 to 131,072
cores). The analogous increase in Figure 7 has
mainly the same cause (iterations increased 50%
from 256 to 131,072 cores). GMRES’ property
of orthogonalizing each new basis vector against
all previous basis vectors leads to a superlinear
time increase with respect to the iteration count.
Note that for both figures, the problem is scaled
by a factor of 512x, with the largest matrix for the
coupled momentum and PPE being 27 billion rows
resp. 9 billion rows on 131,072 processor cores.
Given the size of the largest problem, scaling is
very good. This scaling study had the additional
purpose of demonstrating the capability to provide
high fidelity simulations for analysts at SNL. For
the simulation run on 131,072 cores, the maximum
memory required by any MPI process was a bit
more than half the available memory per mpi
process, so we actually could have run a problem
with almost twice as many elements.

Figures 8 and 9 present parallel speedup for
coupled momentum and PPE respectively for the
1.12 billion element case as processor cores are
increased from 4k to 64k. Ideal speedup is also
plotted, and is a curved line because the vertical

!"

<"

&"

9"

;"

=!"

=<"

=&"

=9"

&<!=9" =9<%;&" 9:<:%9"

*!
""
#$

!%

%%&'(%

)*'++:,-./$%)01234%)5./634%'/"7"3089.("#%
)5:"7";%I<I=5%"/"7>%&&'%F8$/?416#@%%

+,-./" 011-23/-" 011-2>56.,"7628" 96/?-!"#$%&""

Figure 9. Nalu strong scaling for PPE for 1.12 billion element
mesh. Very good scaling considering the size of the mesh and core
counts (up to 65,536 cores).

axis is plotted on a linear scale rather than a
logarithmic scale. In Figure 9, the fourth curve is
the matrix solve time but not including the precon-
ditioner setup time. For both coupled momentum
and PPE, the scaling for the matrix assembly is
very good. For coupled momentum, scaling of the
matrix solve time is optimal, matching the ideal
speedup. For PPE, the matrix solve time minus
the preconditioner setup time is very good.

VI. CONCLUSIONS

We presented a case study of integrating a new
set of sparse matrix solvers and data structures in
Trilinos with the SIERRA low-Mach module/Nalu
application code. This study highlighted the value
of tracking performance during the integration
process. We showed good weak scaling for the
matrix assembly and solve in Nalu, for up to a
9 billion element fluid flow large eddy simulation
(LES) problem on unstructured meshes with a 27
billion row matrix on 131,072 cores of a Cray
XE6 platform. For fully implicit low Mach field
simulations on unstructured meshes we believe
that our 9 billion node simulation on 131,072 cores
rivals any other simulation in the field. The main
remaining scaling bottleneck is multigrid setup;
ongoing work will address this issue.

The new Trilinos solver stack allows arbitrarily
large global entities and provides a path forward

1493

for future architectures. Its integration into Nalu
required significant revisions, which fixed correct-
ness, per-process performance, and parallel scala-
bility issues. All resulting new features and fixes
in Trilinos will prove useful for a wide variety
of large-scale simulations, not just Nalu. Further-
more, best practices we learned for improving
Nalu’s finite-element assembly performance will
apply generally to any finite-element application
with implicit solves using Trilinos. We continue
to mature the new Trilinos, especially for current
and upcoming manycore architectures.

ACKNOWLEDGMENT

The authors would like to thank the following
colleagues for their contributions: Anthony Age-
lastos, Ryan Bond, Kevin Copps, Mehmet De-
veci, Karen Devine, Jeremie Gaidamour, Micheal
Glass, Michael Heroux, Robert Hoekstra, Stephen
Kennon, Kyran Mish, Brent Perschbacher, Kendall
Pierson, Jim Willenbring, and Alan Williams.

Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s
National Nuclear Security Administration under
contract DE-AC04-94AL85000.

REFERENCES

[1] M. Heroux et al., “An overview of the Trilinos project,”
ACM Trans. Math. Softw., vol. 31, no. 3, pp. 397–423,
2005.

[2] S. Domino, C. Moen, S. Burns, and G. Evans,
“SIERRA/Fuego: A multi-mechanics fire environment
simulation tool,” in 41st Aerospace Sciences Meeting
and Exhibit, AIAA 2003-149, 2003.

[3] H. Edwards and J. Stewart, “Sierra: A software envi-
ronment for developing complex multiphysics applica-
tions,” in 1st MIT Conference on Computational Fluid
and Solid Mechanics, K. Bathe, Ed., 2001.

[4] H. Edwards, D. Sunderland, V. Porter, C. Amsler, and
S. Mish, “Manycore performance portability: Kokkos
multidimensional array library,” Scientific Program-
ming, vol. 20, no. 2, pp. 89–114, 2012.

[5] E. Hawkes, O. Chatakonda, H. Kolla, A. Kerstein,
and J. Chen, “A petascale direct numerical simulation
study of the modelling of flame wrinkling for large-
eddy simulations in intense turbulence,” Combusion
and Flame, vol. 159, no. 8, pp. 2690–2703, 2012.

[6] V. Moureau, P. Domingo, and L. Vervisch, “From
Large-Eddy Simulation to Direct Numerical Simula-
tion of a lean premixed swirl flame: Filtered laminar
flame-PDF modeling,” Combusion and Flame, vol.
158, no. 7, pp. 1340–1357, 2011.

[7] J. Schmidt, M. Berzins, J. Thornock, T. Saad, and
J. Sutherland, “Large scale parallel solution of incom-
pressible flow problems using Uintah and hypre,” Uni-
versity of Utah, Tech. Rep. UUSCI-2012-002, 2012.

[8] C. Baker and M. Heroux, “Tpetra and the use of
generic programming in scientific computing,” Scien-
tific Programming, vol. 20, no. 2, pp. 115–128, 2012.

[9] R. S. Tuminaro, M. Heroux, S. A. Hutchinson, and
J. N. Shadid, “Aztec user’s guide–version 2.1,” San-
dia National Laboratories, Tech. Rep. SAND99-8801J,
1999.

[10] E. Bavier, M. Hoemmen, S. Rajamanickam, and
H. Thornquist, “Amesos2 and Belos: Direct and itera-
tive solvers for large sparse linear systems,” Scientific
Programming, vol. 20, no. 3, pp. 241–255, 2012.

[11] M. Gee, C. Siefert, J. Hu, R. Tuminaro, and M. Sala,
“ML 5.0 smoothed aggregation user’s guide,” Sandia
National Laboratories, Tech. Rep. SAND2006-2649,
2006.

[12] J. Gaidamour, J. Hu, C. Siefert, and R. Tuminaro,
“Design considerations for a flexible multigrid pre-
conditioning library,” Scientific Programming, vol. 20,
no. 3, pp. 223–239, 2012.

[13] K. Devine, E. Boman, R. Heaphy, B. Hendrickson,
and C. Vaughan, “Zoltan data management services for
parallel dynamic applications,” Computing in Science
and Engineering, vol. 4, no. 2, pp. 90–97, 2002.

[14] M. Deveci, S. Rajamanickam, K. D. Devine, and U. V.
Catalyurek, “Multi-jagged: A scalable multi-section
based spatial partitioning algorithm,” Sandia National
Laboratories, Tech. Rep., 2012.

[15] Y. Saad and M. Schultz, “GMRES: A generalized
minimal residual algorithm for solving nonsymmetric
linear systems,” SIAM J. Sci. Stat. Comput., vol. 7,
no. 3, pp. 856–869, Jul. 1986.

[16] H. Edwards, A. Williams, G. Sjaardema, D. Baur,
and W. Cochran, “Toolkit computational mesh concep-
tual model,” Sandia National Laboratories, Tech. Rep.
SAND2010-1192, 2010.

[17] S. Domino, “Low Mach Sierra Thermal/Fluids Module
Nalu: Theory Manual,” Sandia National Laboratories
internal document, Tech. Rep., 2013.

[18] A. Abdel-Rahman, W. Chakroun, and S. Al-Fahed,
“LDA measurements in the turbulent round jet,” Me-
chanics Research Communications, vol. 24, no. 3, pp.
277–288, 1997.

1494

